58 research outputs found

    Impact of time-variant turbulence behavior on prediction for adaptive optics systems

    Get PDF
    For high contrast imaging systems, the time delay is one of the major limiting factors for the performance of the extreme adaptive optics (AO) sub-system and, in turn, the final contrast. The time delay is due to the finite time needed to measure the incoming disturbance and then apply the correction. By predicting the behavior of the atmospheric disturbance over the time delay we can in principle achieve a better AO performance. Atmospheric turbulence parameters which determine the wavefront phase fluctuations have time-varying behavior. We present a stochastic model for wind speed and model time-variant atmospheric turbulence effects using varying wind speed. We test a low-order, data-driven predictor, the linear minimum mean square error predictor, for a near-infrared AO system under varying conditions. Our results show varying wind can have a significant impact on the performance of wavefront prediction, preventing it from reaching optimal performance. The impact depends on the strength of the wind fluctuations with the greatest loss in expected performance being for high wind speeds.Comment: 10 pages, 8 figures; Accepted to JOSA A March 201

    Robustness of prediction for extreme adaptive optics systems under various observing conditions: An analysis using VLT/SPHERE adaptive optics data

    Full text link
    For high-contrast imaging (HCI) systems, such as VLT/SPHERE, the performance of the system at small angular separations is contaminated by the wind-driven halo in the science image. This halo is a result of the servo-lag error in the adaptive optics (AO) system due to the finite time between measuring the wavefront phase and applying the phase correction. One approach to mitigating the servo-lag error is predictive control. We aim to estimate and understand the potential on-sky performance that linear data-driven prediction would provide for VLT/SPHERE under various turbulence conditions. We used a linear minimum mean square error predictor and applied it to 27 different AO telemetry data sets from VLT/SPHERE taken over many nights under various turbulence conditions. We evaluated the performance of the predictor using residual wavefront phase variance as a performance metric. We show that prediction always results in a reduction in the temporal wavefront phase variance compared to the current VLT/SPHERE AO performance. We find an average improvement factor of 5.1 in phase variance for prediction compared to the VLT/SPHERE residuals. When comparing to an idealised VLT/SPHERE, we find an improvement factor of 2.0. Under our 27 different cases, we find the predictor results in a smaller spread of the residual temporal phase variance. Finally, we show there is no benefit to including spatial information in the predictor in contrast to what might have been expected from the frozen flow hypothesis. A purely temporal predictor is best suited for AO on VLT/SPHERE

    Integrated photonic-based coronagraphic systems for future space telescopes

    Full text link
    The detection and characterization of Earth-like exoplanets around Sun-like stars is a primary science motivation for the Habitable Worlds Observatory. However, the current best technology is not yet advanced enough to reach the 10^-10 contrasts at close angular separations and at the same time remain insensitive to low-order aberrations, as would be required to achieve high-contrast imaging of exo-Earths. Photonic technologies could fill this gap, potentially doubling exo-Earth yield. We review current work on photonic coronagraphs and investigate the potential of hybridized designs which combine both classical coronagraph designs and photonic technologies into a single optical system. We present two possible systems. First, a hybrid solution which splits the field of view spatially such that the photonics handle light within the inner working angle and a conventional coronagraph that suppresses starlight outside it. Second, a hybrid solution where the conventional coronagraph and photonics operate in series, complementing each other and thereby loosening requirements on each subsystem. As photonic technologies continue to advance, a hybrid or fully photonic coronagraph holds great potential for future exoplanet imaging from space.Comment: Conference Proceedings of SPIE: Techniques and Instrumentation for Detection of Exoplanets XI, vol. 12680 (2023

    Visible extreme adaptive optics on extremely large telescopes: Towards detecting oxygen in Proxima Centauri b and analogs

    Full text link
    Looking to the future of exo-Earth imaging from the ground, core technology developments are required in visible extreme adaptive optics (ExAO) to enable the observation of atmospheric features such as oxygen on rocky planets in visible light. UNDERGROUND (Ultra-fast AO techNology Determination for Exoplanet imageRs from the GROUND), a collaboration built in Feb. 2023 at the Optimal Exoplanet Imagers Lorentz Workshop, aims to (1) motivate oxygen detection in Proxima Centauri b and analogs as an informative science case for high-contrast imaging and direct spectroscopy, (2) overview the state of the field with respect to visible exoplanet imagers, and (3) set the instrumental requirements to achieve this goal and identify what key technologies require further development.Comment: SPIE Proceeding: 2023 / 12680-6

    Research and Design of a Routing Protocol in Large-Scale Wireless Sensor Networks

    Get PDF
    无线传感器网络,作为全球未来十大技术之一,集成了传感器技术、嵌入式计算技术、分布式信息处理和自组织网技术,可实时感知、采集、处理、传输网络分布区域内的各种信息数据,在军事国防、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等领域具有十分广阔的应用前景。 本文研究分析了无线传感器网络的已有路由协议,并针对大规模的无线传感器网络设计了一种树状路由协议,它根据节点地址信息来形成路由,从而简化了复杂繁冗的路由表查找和维护,节省了不必要的开销,提高了路由效率,实现了快速有效的数据传输。 为支持此路由协议本文提出了一种自适应动态地址分配算——ADAR(AdaptiveDynamicAddre...As one of the ten high technologies in the future, wireless sensor network, which is the integration of micro-sensors, embedded computing, modern network and Ad Hoc technologies, can apperceive, collect, process and transmit various information data within the region. It can be used in military defense, biomedical, environmental monitoring, disaster relief, counter-terrorism, remote control of haz...学位:工学硕士院系专业:信息科学与技术学院通信工程系_通信与信息系统学号:2332007115216

    COVID-19 and Changing Values

    No full text
    We study value change due to the corona pandemic. With the help of topic modelling, we analysed COVID-related news articles for changes in the frequency of how often these news articles address eleven different values. We looked at news articles from six countries (US, UK, South Africa, India, Japan, South Korea) and new articles spanning a longer period (2016–20); the latter also contained non-COVID news. We find that in the first few months of the pandemic, there is a punctuated shock in the frequency in which values are addressed. While we see a sharp increase in the value of health and safety, we see a significant decline in the values of democracy, privacy, and socio-economic equality. However, after the first months, we see a move in the opposite direction, which suggests that the punctuated shock’s effect may be cancelled over time. We also present – and offer possible explanations for – differences between countries and compare our results with the literature. We do not find evidence that the COVID-19 pandemic confronts us with a moral dilemma of health versus economic welfare, or lives versus livelihoods, as has sometimes been suggested. Our study also indicates a degree of moral resilience in the studied countries, in the sense of the ability to pay attention to morally important values, despite being put under pressure during a crisis

    Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials

    No full text
    Biomaterial-associated-infection causes failure of biomaterial implants. Many new biomaterials have been evaluated for their ability to inhibit bacterial colonization and stimulate tissue-cell-integration, but neglect the role of immune cells. This paper compares macrophage phagocytosis of adhering Staphylococcus aureus on cationic-coatings and patterned poly(ethylene)glycol-hydrogels versus common biomaterials and stainless steel in order to identify surface conditions that promote clearance of adhering bacteria. Staphylococci were allowed to adhere and grow on the materials in a parallel-plate-flow-chamber, after which murine macrophages were introduced. From the decrease in the number of adhering staphylococci, phagocytosis-rates were calculated, and total macrophage displacements during an experiment determined. Hydrophilic surfaces had the lowest phagocytosis-rates, while common biomaterials had intermediate phagocytosis-rates. Patterning of poly(ethylene)glycol-hydrogel coatings increased phagocytosis-rates to the level of common biomaterials, while on cationic-coatings phagocytosis-rates remained relatively low. Likely, phagocytosis-rates on cationic coatings are hampered relative to common biomaterials through strong electrostatic binding of negatively-charged macrophages and staphylococci. On polymeric biomaterials and glass, phagocytosis-rates increased with macrophage displacement, while both parameters increased with biomaterial surface hydrophobicity. Thus hydrophobicity is a necessary surface condition for effective phagocytosis. Concluding, next-generation biomaterials should account for surface effects on phagocytosis in order to enhance the ability of these materials to resist biomaterial-associated-infection. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
    corecore